Test Case 9 is used to verify functionality and losses on transportation arcs with time step weights. The tables below depict the sets and parameters, respectively. Production costs in $DEU$ are much too high. However, $NLD$ has no own demand and can export to $DEU$ with operational cost of $0.1$ and losses of 10%. In addition to production and conversion costs of $1$, 10% must be produced on top, and operational costs of $0.1$ follow. Marginalized provision costs are hence $1.2$. Tests are passed, if prices are $1.2$ and $0$ in $DEU$ and $NLD$, respectively. Further, $0.88$ must be produced in $NLD$, corresponding to a consumption quantity of $0.8$ in $DEU$.
The implementation in the testing routine features two separate runs for shipping and pipelines (denoted by case 9a and 9b), however, mathematical model data remain unchanged.
Parameter | y=2020 |
---|
$\frac{1}{ | \Delta |_{y}}$ | $1$ |
${1}^{NC}_{T\_DEU,DEU,CNG}$ | $0$ |
${1}^{NC}_{T\_DEU,NLD,CNG}$ | $0$ |
${1}^{NC}_{T\_NLD,DEU,CNG}$ | $0$ |
${1}^{NC}_{T\_NLD,NLD,CNG}$ | $0$ |
$r_{y}$ | $1$ |
$d_{OnlyTimeStep}$ | $2$ |
$c^{P}_{P\_DEU,CNG,FES,y}$ | $0.5$ |
$c^{\Delta P}_{P\_DEU,CNG,FES,y}$ | $1$ |
$c^{P}_{P\_NLD,CNG,FES,y}$ | $0.5$ |
$c^{\Delta P}_{P\_NLD,CNG,FES,y}$ | $1$ |
$fi^{P}_{CNG,Natural Gas,FES}$ | $1$ |
$L^{P}_{CNG,FES}$ | $50$ |
$\Lambda^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $10$ |
$\Omega^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$c^{\Delta^{I}}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$\Lambda^{T}_{T\_DEU,DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{T}_{T\_DEU,NLD,CNG,FES,y}$ | $10$ |
$\Omega^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{P}_{P\_NLD,CNG,FES,y}$ | $10$ |
$\Lambda^{I}_{P\_NLD,Natural Gas,Block 1,y}$ | $10$ |
$\Omega^{I}_{P\_NLD,Natural Gas,Block 1,y}$ | $0$ |
$c^{\Delta^{I}}_{P\_NLD,Natural Gas,Block 1,y}$ | $0$ |
$\Lambda^{T}_{T\_NLD,DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{T}_{T\_NLD,NLD,CNG,FES,y}$ | $10$ |
$\Omega^{P}_{P\_NLD,CNG,FES,y}$ | $10$ |
$l^{A}_{DEU\_to\_DEU,CNG}$ | $0.0$ |
$l^{A}_{DEU\_to\_NLD,CNG}$ | $0.0$ |
$l^{A}_{NLD\_to\_DEU,CNG}$ | $0.1$ |
$l^{A}_{NLD\_to\_NLD,CNG}$ | $0.0$ |
$c^{A}_{DEU\_to\_DEU,CNG,y}$ | $0.0$ |
$c^{A}_{DEU\_to\_NLD,CNG,y}$ | $0.0$ |
$c^{A}_{NLD\_to\_DEU,CNG,y}$ | $0.1$ |
$c^{A}_{NLD\_to\_NLD,CNG,y}$ | $0.0$ |
$c^{\Delta A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$c^{\Delta A}_{DEU\_to\_NLD,CNG,y}$ | $0$ |
$c^{\Delta A}_{NLD\_to\_DEU,CNG,y}$ | $0$ |
$c^{\Delta A}_{NLD\_to\_NLD,CNG,y}$ | $0$ |
$\Lambda^{A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$\Lambda^{A}_{DEU\_to\_NLD,CNG,y}$ | $0$ |
$\Lambda^{A}_{NLD\_to\_DEU,CNG,y}$ | $10$ |
$\Lambda^{A}_{NLD\_to\_NLD,CNG,y}$ | $0$ |
$L^{A}_{CNG}$ | $50$ |
$c^{I_{l}}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep,y}$ | $2$ |
$c^{I_{q}}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep,y}$ | $0$ |
$av^{I}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep}$ | $1$ |
$c^{I_{l}}_{P\_NLD,Natural Gas,Block 1,OnlyTimeStep,y}$ | $0.5$ |
$c^{I_{q}}_{P\_NLD,Natural Gas,Block 1,OnlyTimeStep,y}$ | $0$ |
$av^{I}_{P\_NLD,Natural Gas,Block 1,OnlyTimeStep}$ | $1$ |
$\alpha^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $2$ |
$\beta^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $-1$ |
$\alpha^{D}_{NLD,CNG,Block 1,OnlyTimeStep,y}$ | $0$ |
$\beta^{D}_{NLD,CNG,Block 1,OnlyTimeStep,y}$ | $-1$ |