Test Case 3

Test Case 3 asserts exertion of market power in a simple Cournot setting with time step weights. Marginalized costs for given factor intensities are $MC=c^{I_{l}} + c^{I_{q}}_ \cdot Q + c^{P} $$, while prices are $$P(Q) = \alpha^{D} + \beta^{D} Q$. As there is only one trader, the model now describes a Cournot monopoly. It is known from economic theory that in a profit-maximizing solution, marginalized costs are equal to marginal revenues ($MR=MC$). \Cref{fig:test_3} is a graphical representation of the optimal solution. Hence, this test passes if the equilibrium price is $P=1.5$.

Sets

Set NameSet Value
$\mathcal{A}$$\{DEU\_to\_DEU\}$
$\mathcal{AC}$$\{(DEU\_to\_DEU,CNG)\}$
$\mathcal{C}$$\{CNG\}$
$\mathcal{DSB}$$\{Block 1\}$
$\mathcal{I}$$\{Natural Gas\}$
$\mathcal{IOB}$$\{Block 1\}$
$\mathcal{M}$$\{OnlyTimeStep\}$
$\mathcal{N}$$\{DEU\}$
$\mathcal{O}$$\{FES\}$
$\mathcal{P}$$\{P\_DEU\}$
$\mathcal{RA}$
$\mathcal{RS}$
$\mathcal{RV}$
$\mathcal{S}$
$\mathcal{T}$$\{T\_DEU\}$
$\mathcal{V}$
$\mathcal{VT}$
$\mathcal{Y}$$\{2020\}$

Parameters

Parametery=2020
$\frac{1}{ | \Delta |_{y}}$$1$
${1}^{NC}_{T\_DEU,DEU,CNG}$$1$
$r_{y}$$1$
$d_{OnlyTimeStep}$$2$
$c^{P}_{P\_DEU,CNG,FES,y}$$0.5$
$c^{\Delta P}_{P\_DEU,CNG,FES,y}$$1$
$fi^{P}_{CNG,Natural Gas,FES}$$1$
$L^{P}_{CNG,FES}$$50$
$\Lambda^{P}_{P\_DEU,CNG,FES,y}$$10$
$\Lambda^{I}_{P\_DEU,Natural Gas,Block 1,y}$$10$
$\Omega^{I}_{P\_DEU,Natural Gas,Block 1,y}$$0$
$c^{\Delta^{I}}_{P\_DEU,Natural Gas,Block 1,y}$$0$
$\Lambda^{T}_{T\_DEU,DEU,CNG,FES,y}$$10$
$\Omega^{P}_{P\_DEU,CNG,FES,y}$$10$
$l^{A}_{DEU\_to\_DEU,CNG}$$0$
$c^{A}_{DEU\_to\_DEU,CNG,y}$$0$
$c^{\Delta A}_{DEU\_to\_DEU,CNG,y}$$0$
$\Lambda^{A}_{DEU\_to\_DEU,CNG,y}$$0$
$L^{A}_{CNG}$$50$
$c^{I_{l}}_{P\_DEU,Electricity,Block 1,OnlyTimeStep,y}$$0.5$
$c^{I_{q}}_{P\_DEU,Electricity,Block 1,OnlyTimeStep,y}$$0$
$av^{I}_{P\_DEU,Electricity,Block 1,OnlyTimeStep}$$1$
$\alpha^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$$2$
$\beta^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$$-1$

Test Criteria

ExpressionResult y=2020
$\tilde{P}^{T \rightarrow D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$$1.5$

Graphical Solution

Profit Maximization in a Cournot Setting

test_case_3_graphic