Test Case 3 asserts exertion of market power in a simple Cournot setting with time step weights. Marginalized costs for given factor intensities are $MC=c^{I_{l}} + c^{I_{q}}_ \cdot Q + c^{P} $$, while prices are $$P(Q) = \alpha^{D} + \beta^{D} Q$. As there is only one trader, the model now describes a Cournot monopoly. It is known from economic theory that in a profit-maximizing solution, marginalized costs are equal to marginal revenues ($MR=MC$). \Cref{fig:test_3} is a graphical representation of the optimal solution. Hence, this test passes if the equilibrium price is $P=1.5$.
Set Name | Set Value |
---|
$\mathcal{A}$ | $\{DEU\_to\_DEU\}$ |
$\mathcal{AC}$ | $\{(DEU\_to\_DEU,CNG)\}$ |
$\mathcal{C}$ | $\{CNG\}$ |
$\mathcal{DSB}$ | $\{Block 1\}$ |
$\mathcal{I}$ | $\{Natural Gas\}$ |
$\mathcal{IOB}$ | $\{Block 1\}$ |
$\mathcal{M}$ | $\{OnlyTimeStep\}$ |
$\mathcal{N}$ | $\{DEU\}$ |
$\mathcal{O}$ | $\{FES\}$ |
$\mathcal{P}$ | $\{P\_DEU\}$ |
$\mathcal{RA}$ | ∅ |
$\mathcal{RS}$ | ∅ |
$\mathcal{RV}$ | ∅ |
$\mathcal{S}$ | ∅ |
$\mathcal{T}$ | $\{T\_DEU\}$ |
$\mathcal{V}$ | ∅ |
$\mathcal{VT}$ | ∅ |
$\mathcal{Y}$ | $\{2020\}$ |
Parameter | y=2020 |
---|
$\frac{1}{ | \Delta |_{y}}$ | $1$ |
${1}^{NC}_{T\_DEU,DEU,CNG}$ | $1$ |
$r_{y}$ | $1$ |
$d_{OnlyTimeStep}$ | $2$ |
$c^{P}_{P\_DEU,CNG,FES,y}$ | $0.5$ |
$c^{\Delta P}_{P\_DEU,CNG,FES,y}$ | $1$ |
$fi^{P}_{CNG,Natural Gas,FES}$ | $1$ |
$L^{P}_{CNG,FES}$ | $50$ |
$\Lambda^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $10$ |
$\Omega^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$c^{\Delta^{I}}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$\Lambda^{T}_{T\_DEU,DEU,CNG,FES,y}$ | $10$ |
$\Omega^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$l^{A}_{DEU\_to\_DEU,CNG}$ | $0$ |
$c^{A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$c^{\Delta A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$\Lambda^{A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$L^{A}_{CNG}$ | $50$ |
$c^{I_{l}}_{P\_DEU,Electricity,Block 1,OnlyTimeStep,y}$ | $0.5$ |
$c^{I_{q}}_{P\_DEU,Electricity,Block 1,OnlyTimeStep,y}$ | $0$ |
$av^{I}_{P\_DEU,Electricity,Block 1,OnlyTimeStep}$ | $1$ |
$\alpha^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $2$ |
$\beta^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $-1$ |
Expression | Result y=2020 |
---|
$\tilde{P}^{T \rightarrow D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $1.5$ |