Test Case 23 asserts that piece-wise quadratic cost functions for input procurement work as desired. It is structurally similar to Test Case 3, only that the first block of input procurement only goes to 25% of the total capacity of 1. After a quantity of 0.2, an increase in marginalized cost slope can be identified. Below, a graphical representation of the optimal solution is provided. Hence, this test passes if the equilibrium price is $P=1.5$, with an objective value of 0.45 and corresponding social welfare of 0.575 (see the grey area in the graphic).
Parameter | y=2020 |
---|
$\frac{1}{ | \Delta |_{y}}$ | $1$ |
${1}^{NC}_{T\_DEU,DEU,CNG}$ | $1$ |
$r_{y}$ | $1$ |
$d_{OnlyTimeStep}$ | $1$ |
$c^{P}_{P\_DEU,CNG,FES,y}$ | $0.3$ |
$c^{\Delta P}_{P\_DEU,CNG,FES,y}$ | $1$ |
$fi^{P}_{CNG,Natural Gas,FES}$ | $1$ |
$L^{P}_{CNG,FES}$ | $50$ |
$\Lambda^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$\Lambda^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $0.25$ |
$\Lambda^{I}_{P\_DEU,Natural Gas,Block 2,y}$ | $0.75$ |
$\Omega^{I}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$\Omega^{I}_{P\_DEU,Natural Gas,Block 2,y}$ | $0$ |
$c^{\Delta^{I}}_{P\_DEU,Natural Gas,Block 1,y}$ | $0$ |
$c^{\Delta^{I}}_{P\_DEU,Natural Gas,Block 2,y}$ | $0$ |
$\Lambda^{T}_{T\_DEU,DEU,CNG,FES,y}$ | $10$ |
$\Omega^{P}_{P\_DEU,CNG,FES,y}$ | $10$ |
$l^{A}_{DEU\_to\_DEU,CNG}$ | $0$ |
$c^{A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$c^{\Delta A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$\Lambda^{A}_{DEU\_to\_DEU,CNG,y}$ | $0$ |
$L^{A}_{CNG}$ | $50$ |
$c^{I_{l}}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep,y}$ | $0.1$ |
$c^{I_{q}}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep,y}$ | $0.4$ |
$av^{I}_{P\_DEU,Natural Gas,Block 1,OnlyTimeStep}$ | $1$ |
$c^{I_{l}}_{P\_DEU,Natural Gas,Block 2,OnlyTimeStep,y}$ | $0.2$ |
$c^{I_{q}}_{P\_DEU,Natural Gas,Block 2,OnlyTimeStep,y}$ | $2.0$ |
$av^{I}_{P\_DEU,Natural Gas,Block 2,OnlyTimeStep}$ | $1$ |
$\alpha^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $2$ |
$\beta^{D}_{DEU,CNG,Block 1,OnlyTimeStep,y}$ | $-1$ |