Converter

\[\begin{aligned} \max_{\substack{q^{V}_{vtcdomy}, \\ \Delta^{V}_{vcc'y}, \\ \Delta^{RV}_{vrr'cc'y}}} \quad & % \sum_{y \in \mathcal{Y}} r_{y} \left[ \begin{aligned} \sum_{(c,c') \in \mathcal{VT}} \left( \begin{aligned}\sum_{t \in \mathcal{T}} \sum_{o \in \mathcal{O}} \sum_{m \in \mathcal{M}} d_m \left( \pi^{V \rightarrow T}_{tnc'omy} - fi^{V}_{cc'} \pi^{T \rightarrow V}_{tncomy} - c^{V}_{vcc'y} \right) q^{V}_{vtcc'omy} \\ - \frac{1}{ \| \Delta \|_{y}} c^{\Delta V}_{vcc'y} \Delta^{V}_{vcc'y} \end{aligned} \right) \\ - \frac{1}{ \| \Delta \|_{y}} \sum_{((r,r'),(cc')) \in \mathcal{RV}} c^{\Delta^{RV}}_{vrr'cc'y} \Delta^{RV}_{vrr'cc'y} \end{aligned} \right] \\ \text{s.t.} \quad & \begin{aligned} \sum_{o \in \mathcal{O}} \sum_{t \in \mathcal{T}} q^{V}_{vtcc'omy} \\ \leq \left( \begin{aligned} \Lambda^{V}_{vcc'y}\\ + \sum_{y' \in \mathcal{Y} | y-L^{V}_{cc'} \leq y' < y } \Delta^{V}_{vcc'y} \\ + \sum_{(r,r') | ((r,r'),(cc')) \in \mathcal{RV}} \sum_{ y' \in \mathcal{Y} | y-L^{V}_{cc'} \leq y'< y} f^{RV}_{rr'cc'} \Delta^{RV}_{vrr'cc'y}\\ - \sum_{(r,r') | ((cc'),(r,r')) \in \mathcal{RV}} \sum_{ y' \in \mathcal{Y} | y'< y} \Delta^{RV}_{vcc'rr'y} \end{aligned} \right) \end{aligned} \, & \begin{aligned} \forall m \in \mathcal{M}, y \in \mathcal{Y}, \\ (c,c') \in \mathcal{VT} \end{aligned} \quad & (\lambda^{V}_{vcc'my}) \\ & q^{V}_{vtcc'omy}, \Delta^{V}_{vcc'y}, \Delta^{RV}_{vrr'cc'y} \geq 0 \quad & & \end{aligned}\]