Mappings
Mapping | Explanation |
---|---|
$\mathcal{A}_e(n)$ | All transportation arcs $a$ that end in node $n$. Defined for all $n \in \mathcal{N}$. |
$\mathcal{A}_s(n)$ | All transportation arcs $a$ that start in node $n$. Defined for all $n \in \mathcal{N}$. |
$a^{-1}(a)$ | Arc going in the opposite direction of $a$. Defined for all $a \in \mathcal{A}$. |
$n(p)$ | Mapping each producer $p$ to the corresponding node $n$. Defined for all $p \in \mathcal{P}$. |
$\mathcal{P}(t,n)$ | Set containing all domestic producers of trader $t$ in node $n$. Defined for all $t \in \mathcal{T}$, $n \in \mathcal{N}$. |
$\mathcal{N}_p(t)$ | Set of all production nodes of trader $t$. Defined for all $t \in \mathcal{T}$. |
$n(s)$ | Mapping each storage system operator $s$ to the corresponding node $n$. Defined for all $s \in \mathcal{S}$. |
$s(n)$ | Domestic storage system operator of node $n$. Defined for all $n \in \mathcal{N}$. |
$v(n)$ | Domestic converter of node $n$. Defined for all $n \in \mathcal{N}$. |
$m^{+}(m)$ | Time step following $m$. The step following the last one is the first, i.e. $m^{+}(m[end]) = m[1]$. Defined for all $m \in \mathcal{M}$. |
$m^{-}(m)$ | Time step preceding $m$. The step preceding the first one is the last, i.e. $m^{-}(m[1]) = m[end]$. Defined for all $m \in \mathcal{M}$. |