Mappings

MappingExplanation
$\mathcal{A}_e(n)$All transportation arcs $a$ that end in node $n$. Defined for all $n \in \mathcal{N}$.
$\mathcal{A}_s(n)$All transportation arcs $a$ that start in node $n$. Defined for all $n \in \mathcal{N}$.
$a^{-1}(a)$Arc going in the opposite direction of $a$. Defined for all $a \in \mathcal{A}$.
$n(p)$Mapping each producer $p$ to the corresponding node $n$. Defined for all $p \in \mathcal{P}$.
$\mathcal{P}(t,n)$Set containing all domestic producers of trader $t$ in node $n$. Defined for all $t \in \mathcal{T}$, $n \in \mathcal{N}$.
$\mathcal{N}_p(t)$Set of all production nodes of trader $t$. Defined for all $t \in \mathcal{T}$.
$n(s)$Mapping each storage system operator $s$ to the corresponding node $n$. Defined for all $s \in \mathcal{S}$.
$s(n)$Domestic storage system operator of node $n$. Defined for all $n \in \mathcal{N}$.
$v(n)$Domestic converter of node $n$. Defined for all $n \in \mathcal{N}$.
$m^{+}(m)$Time step following $m$. The step following the last one is the first, i.e. $m^{+}(m[end]) = m[1]$. Defined for all $m \in \mathcal{M}$.
$m^{-}(m)$Time step preceding $m$. The step preceding the first one is the last, i.e. $m^{-}(m[1]) = m[end]$. Defined for all $m \in \mathcal{M}$.